শক্তিশালী প্রবাহ পাওয়ার জন্য একাধিক কোষ একত্রে ব্যবহার করাকে কোষের সমন্বয় বলে । কোষের সমন্বয়কে অনেক সময় সমবায়, সন্নিবেশ বা সমাবেশও বলে। একাধিক কোষ এক সাথে ব্যবহার করলে তাকে ব্যাটারিও বলা হয়। কোষের সমন্বয় দুই প্রকার হয়ে থাকে।
কতগুলো তড়িৎ কোষ যদি পর পর এমনভাবে সাজানো থাকে যে, প্রথম কোষের ঋণাত্মক পাতের সাথে দ্বিতীয় কোষের ধনাত্মক পাত, দ্বিতীয় কোষের ঋণাত্মক পাতের সাথে তৃতীয় কোষের ধনাত্মক পাত এবং বাকিগুলো এরূপে সংযুক্ত থাকে তাকে শ্রেণি সমন্বয় বলে।
প্রবাহ নির্ণয় : ধরা যাক, R মানের বাইরের রোধের সাথে সংখ্যক তড়িৎ কোষ শ্রেণি সমন্বয়ের যুক্ত আছে [চিত্র ৩:৪]। আরো ধরা যাক, প্রতিটি কোষের তড়িচ্চালক শক্তি E এবং অভ্যন্তরীণ রোধ r । সমন্বয়ের মোট তড়িচ্চালক শক্তি Es, এবং তুল্য অভ্যন্তরীণ রোধ rs হলে বর্তনীর প্রবাহ ls হবে, ও'মের সূত্রানুসারে
কিন্তু কোষগুলো শ্রেণি সমন্বয়ে থাকায় মোট তড়িচ্চালক শক্তি হবে Es = E + E +…. n সংখ্যক পদ = nE এবং অভ্যন্তরীণ রোধ হবে rs =r+r+….. n সংখ্যক পদ = nr
:-
যে কোনো একটি কোষের প্রবাহের সমান হয়। এ সমবায় থেকে কোনো বিশেষ সুবিধা পাওয়া যায় না।
সুতরাং যখন কোষের অভ্যন্তরীণ রোধ r -এর তুলনায় বাইরের রোধ R অনেক বড় হয় তখন শক্তিশালী প্রবাহ পাওয়ার জন্য কোষের শ্রেণি সমন্বয় ব্যবহার করা হয়।
প্রবাহ নির্ণয় : ধরা যাক, সমান্তরাল সমন্বয়ে m সংখ্যক কোষ আছে যাদের প্রত্যেকের তড়িচ্চালক শক্তি E এবং অভ্যন্তরীণ রোধ r । এ সমন্বয়ের সাথে R মানের বাইরের রোধ সংযুক্ত আছে [চিত্র ৩.৫]। সমন্বয়ের মোট তড়িচ্চালক শক্তি Ep এবং তুল্য অভ্যন্তরীণ রোধ rp বর্তনীর প্রবাহ Ip হবে, ও'মের সূত্রানুসারে,
কিন্তু সমান তড়িচ্চালক শক্তিবিশিষ্ট কোষগুলো সমান্তরালে আছে বলে সমন্বয়ের কোষগুলোর মোট তড়িচ্চালক শক্তি যে কোনো একটি কোষের তড়িচ্চালক শক্তির সমান।
অর্থাৎ Ep = E। আর কোষগুলো সমান্তরাল আছে বলে তাদের অভ্যন্তরীণ রোধগুলোও সমান্তরালে সজ্জিত,
সুতরাং m সংখ্যক পদ
=
বা,
সুতরাং যখন কোষের অভ্যন্তরীণ রোধ r-এর তুলনায় বাইরের রোধ R ছোট হয় তখন শক্তিশালী প্রবাহ পাওয়ার জন্য সমান্তরাল সমন্বয় ব্যবহার করা হয়।
আরও দেখুন...